CarboBreak – Conditions and Mechanisms for Releasing Alveolar Fibrous Carbon Fibre Fragments

Anna Große¹, Romy Naumann¹, Marcel Hofmann¹, Dominic Kehren², Daphne Bäger², Sabine Plitzko² ¹Sächsisches Textilforschungsinstitut e.V. (STFI), Chemnitz (Germany)

²Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), Berlin (Germany)

Innovative fibre materials and composites have been continuously developed in recent years and are enjoying a rising demand in various applications and products. Especially for carbon fibres (CF), the global demand has more than doubled within the last decade. In the case of fibres and composite materials made from them, preliminary investigations showed in some cases a strong tendency to splinter under mechanical stress and mechanical processing. To date, it is still unclear how high the potential for the release of alveolar fragments is in the life cycle of the fibres (WHO criteria: length > 5 μ m, diameter < 3 μ m, aspect ratio > 3:1). Against the background of the asbestos problem, it is necessary to develop material-related expertise on the fracture behaviour of carbon fibres of different types and precursors.

Fibre Selection:

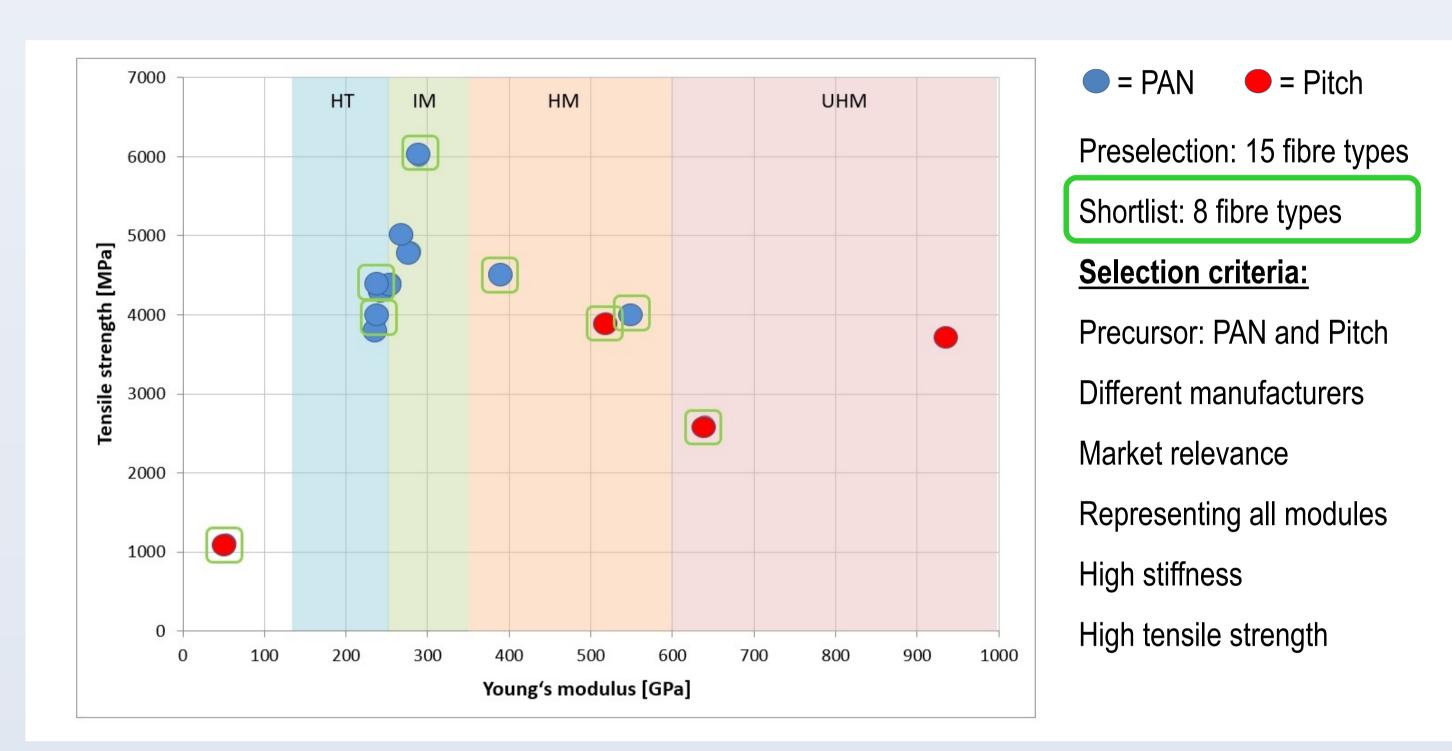


Figure 1: Graph of tensile strength & Young's modulus values of the selected fibres

Microstructure of Carbon Fibres:

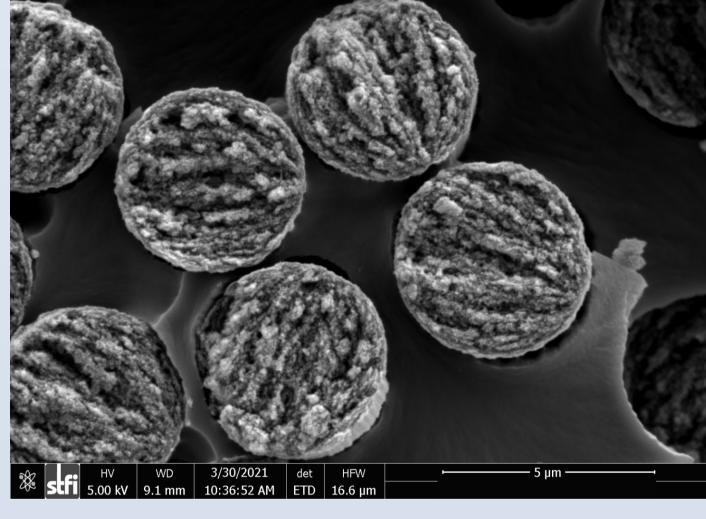


Figure 2: SEM images of the fracture lines of PAN-based (left) and pitch-based (right) CF rovings with similar mechanical properties

Workplace Measurements at STFI:

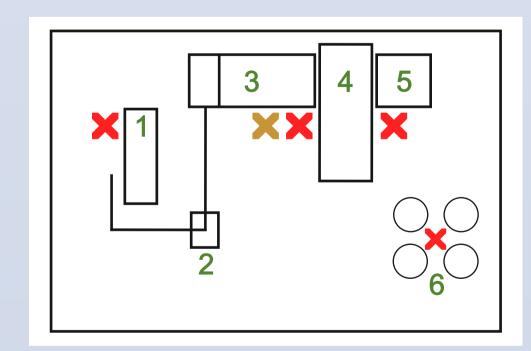


Figure 3: Measurement points

Figure 4: Carbon fibre nonwoven plant at STFI

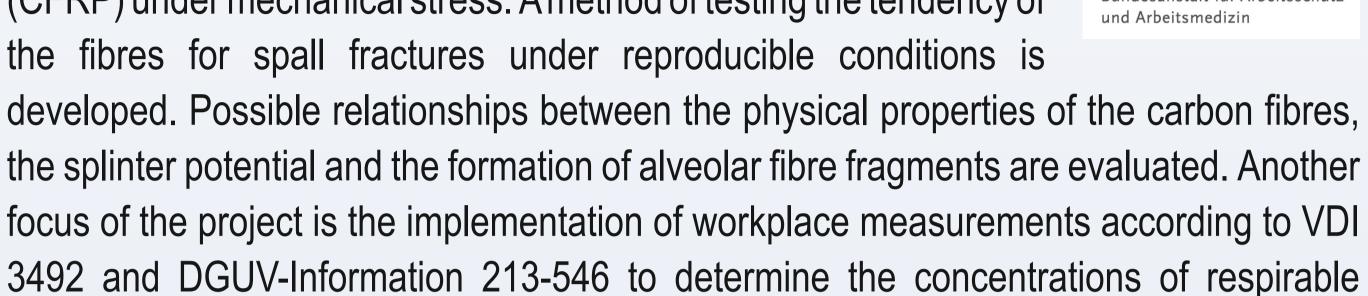

5 Needleloom **Tearing machine** 2 Filling cage unit 6 Filter unit 3 Airlay unit **X** Filtering measurement 4 Crosslapper **X** Online measuring devices

Table 1: WHO fibre concentrations (8 hour shift values) *) Acceptance concentration for mineral wool according to technical rule TRGS521 50,000 F/m³ and for asbestos according to TRGS910 10,000 F/m³

Sample	WHO fibre objects	WHO fibre concentration [F _{WHO} /m³]	95% confidence interval [F _{WHO} /m³] Lower limit Upper limit*)	
Background	0			<10,000
Outside measuring	0			<10,000
Tearing machine	24.5	76,068	48,986	63,400
Airlay unit	22.5	65,711	41,422	55,700
Crosslapper	14.5	40,957	22,663	38,300
Filter unit	13	39,309	20,930	37,800
Personalised	14	44,047	24,081	41,600

Objectives:

The main goal is a deeper understanding of the fracture behaviour of carbon fibres as well as the investigation of the release processes of alveolar fragments from CF and carbon fibre reinforced plastics (CFRP) under mechanical stress. A method of testing the tendency of

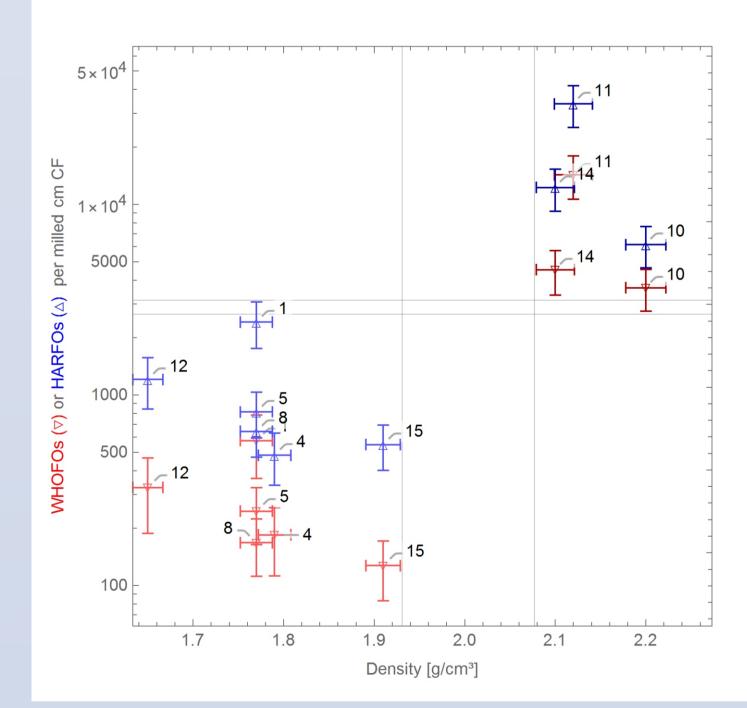
Spall Fracture Tendency Screening:

inorganic fibres in work environments.

SÄCHSISCHES

FORSCHUNGS

INSTITUT e.V.


www.stfi.de

TEXTIL

Figure 5: Milled CF are suspended in isopropanol, diluted and drawn onto a nuclear pore filter. SEM images are taken automatically at random locations on the filter. All objects on these images are analysed regarding their length, diameter and other morphological parameters.

 Table 2: Results of the spall fracture tendency screening [HARFO: High Aspect Ratio Fibre Object | WHOFO: WHO-Fibre Object]

Fibre No.	Precursor	Percentage of HARFO found	Fibre No.	Precursor	reduction of mean fibre diameter [%]	Fibre No.	Precursor	WHOFO per milled cm
11	mPitch	74	11	mPitch	87	11	mPitch	14263
10	mPitch	47,6	10	mPitch	83	14	mPitch	4499
14	mPitch	39,5	14	mPitch	79	10	mPitch	3649
8	PAN	14	1	PAN	76	1	PAN	575
15	PAN	13	12	iPitch	57	12	iPitch	285
5	PAN	12	4	PAN	52	5	PAN	245
1	PAN	10,5	5	PAN	48	4	PAN	175
12	iPitch	5	8	PAN	46	8	PAN	167
4	PAN	5	15	PAN	36	15	PAN	127

Both fibre types, PAN and pitch CF, break along their fibre axis and can form WHO-fibres when under mechanical stress.

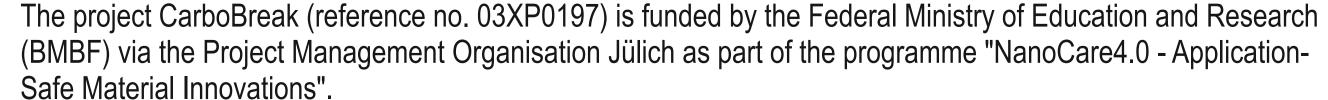

Precautionary measures when working with either materials are highly recommended.

Figure 6: Amount of HARFOs/WHOFOs per milled cm CF shown over the density of the fibre types. A distinctive bandgap between fibres with higher and lower propensity to produce fibrous splinters is revealed.

Project Outputs:

- > Recommendations concerning work procedures and personal safety
- > Development of a protective guideline "Safety by Design and Application Safety"
- > Implementation of a practice-oriented workshop

